A Breeding Estimated Particle Filter Research
نویسنده
چکیده
As the normal particle filter has an expensive computation and degeneracy problem, a propagation-prediction particle filter is proposed. In this scheme, particles after transfer are propagated under the distribution of state noise, and then the produced filial particles are used to predict the corresponding parent particle referring to measurement, in which step the newest measure information is added into estimation. Therefore predicted particle would be closer to the true state, which improves the precision of particle filter. Experiment results have proved the efficiency of the algorithm and the great predominance in little particles case.
منابع مشابه
Real Time Calibration of Strap-down Three-Axis-Magnetometer for Attitude Estimation
Three-axis-magnetometers (TAMs) are widely utilized as a key component of attitude determination subsystems and as such are considered the corner stone of navigation for low Earth orbiting (LEO) space systems. Precise geomagnetic-based navigation demands accurate calibration of the magnetometers. In this regard, a complete online calibration process of TAM is developed in the current research t...
متن کاملA New Modified Particle Filter With Application in Target Tracking
The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...
متن کاملUnscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters
The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...
متن کاملMarginalized Particle Filter for Maneuvering Target Tracking Application
This paper deals with the problem of maneuvering target tracking in wireless tracking service. It results in a mixed linear/non-linear Models estimation problem. For maneuvering tracking systems, these problems are traditionally handled using the extended Kalman filter or Particle filter. In this paper, Marginalized Particle Filter is presented for applications in such problem. The algorithm ma...
متن کاملAdaptive Target Tracking by Noise-Estimated Particle filter
This paper proposes a new radar tracking filter named Noise-estimate Particle Filter (NPF). Kalman filter and particle filter are popular filtering techniques for target tracking. The tracking performance of the Kalman filter severely depends on the setting of several parameters such as system noise and observation noise. However, it is an open problem how to choose proper parameters for variou...
متن کامل